Control of the negative IRES trans-acting factor KHSRP by ubiquitination
نویسندگان
چکیده
Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.
منابع مشابه
HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication
EV71 (enterovirus 71) RNA contains an internal ribosomal entry site (IRES) that directs cap-independent initiation of translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs). We reported recently that mRNA decay factor AUF1 is a negative-acting ITAF that binds IRES stem-loop II. We also reported that the small R...
متن کاملIRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse.
The mRNA coding for FGF-2 (fibroblast growth factor 2), a major angiogenic factor, is translated by an IRES (internal ribosome entry site)-dependent mechanism. We have studied the role of the IRES in the regulation of FGF-2 expression in vivo, under pathophysiological conditions, by creating transgenic mice lines expressing bioluminescent bicistronic transgenes. Analysis of FGF-2 IRES activity ...
متن کاملHeterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA.
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We ha...
متن کاملSubcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation.
Translation of the X-linked inhibitor of apoptosis (XIAP) proceeds by internal ribosome entry site (IRES)-mediated initiation, a process that is physiologically important because XIAP expression is essential for cell survival under conditions of compromised cap-dependent translation, such as cellular stress. The regulation of internal initiation requires the interaction of IRES trans-acting fac...
متن کاملIdentification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia.
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5'-untranslated region (5'-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5'-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017